
CMPE 150/L : Introduction to
Computer Networks

Chen Qian
Computer Engineering

UCSC Baskin Engineering
Lecture 5

1

Any problem of your lab?

Due by next Monday (Jan 29)

Using Canvas?

 Email me cqian12@ucsc.edu and the TAs

Do NOT wait until the weekend.

2

mailto:cqian12@ucsc.edu

Homework questions

Available on course website

 Please work on them, but do not submit
your answers. The answers will be posted
later.

Introduction 1-3

Application Layer 4

HTTP connections

non-persistent HTTP
 at most one object

sent over TCP
connection
connection then

closed
 downloading

multiple objects
required multiple
connections

persistent HTTP
multiple objects

can be sent over
single TCP
connection between
client, server

Application Layer 5

Non-persistent HTTP
suppose user enters URL:

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port
80

2. HTTP client sends HTTP request
message (containing URL) into
TCP connection socket.
Message indicates that client
wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message into
its socket

time

(contains text,
references to 10

jpeg images)
www.someSchool.edu/someDepartment/home.index

Application Layer 6

Non-persistent HTTP (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html
file, finds 10 referenced jpeg
objects

6. Steps 1-5 repeated for each of
10 jpeg objects

4. HTTP server closes TCP
connection.

time

Application Layer 7

Non-persistent HTTP: response time

Round Trip Time (RTT)
definition: time for a small
packet to travel from
client to server and back

HTTP response time:
 one RTT to initiate TCP

connection
 one RTT for HTTP request

and first few bytes of
HTTP response to return

 file transmission time
 non-persistent HTTP

response time =
2RTT+ file transmission
time

time to
transmit
file

initiate TCP
connection

RTT
request
file

RTT

file
received

time time

Application Layer 8

Persistent HTTP

non-persistent HTTP
issues:

 requires 2 RTTs per
object

 OS overhead for each
TCP connection

 browsers often open
parallel TCP
connections to fetch
referenced objects

persistent HTTP:
 server leaves connection

open after sending
response

 subsequent HTTP
messages between same
client/server sent over
open connection

 client sends requests as
soon as it encounters a
referenced object

 as little as one RTT for
all the referenced
objects

Application Layer 9

HTTP request message

 two types of HTTP messages: request, response
 HTTP request message:

 ASCII (human-readable format)

request line
(GET, POST,
HEAD commands)

header
lines

carriage return,
line feed at start
of line indicates
end of header lines

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed character

Application Layer 10

HTTP response message
status line
(protocol
status code
status phrase)

header
lines

data, e.g.,
requested
HTML file

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02

GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-

1\r\n
\r\n
data data data data data ...

Application Layer 11

HTTP response status codes

200 OK
 request succeeded, requested object later in this

msg
301 Moved Permanently

 requested object moved, new location specified later
in this msg (Location:)

400 Bad Request
 request msg not understood by server

404 Not Found
 requested document not found on this server

505 HTTP Version Not Supported

 status code appears in 1st line in server-to-
client response message.

 some sample codes:

Application Layer 12

User-server state: cookies

many Web sites use cookies
four components:

1) cookie header line of
HTTP response
message

2) cookie header line in
next HTTP request
message

3) cookie file kept on
user’s host, managed
by user’s browser

4) back-end database at
Web site

example:
 Susan always access

Internet from PC
 visits specific e-

commerce site for first
time

 when initial HTTP
requests arrives at site,
site creates:
 unique ID
 entry in backend

database for ID

Application Layer 13

Cookies: keeping “state” (cont.)

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual http request msg Amazon server
creates ID

1678 for user create
entry

usual http response
set-cookie: 1678ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

backend
database

Application Layer 14

Cookies (continued)
what cookies can be

used for:
 authorization
 shopping carts
 recommendations
 user session state

(Web e-mail)

cookies and privacy:
 cookies permit sites to

learn a lot about you
 you may supply name and

e-mail to sites

aside

how to keep “state”:
 protocol endpoints: maintain state at

sender/receiver over multiple
transactions

 cookies: http messages carry state

Application Layer 15

Web caches (proxy server)

 user sets browser: Web
accesses via cache

 browser sends all HTTP
requests to cache
 object in cache:

cache returns object
 else cache requests

object from origin
server, then returns
object to client

goal: satisfy client request without involving origin server

client

proxy
server

client origin
server

origin
server

Application Layer 16

More about Web caching

 cache acts as both
client and server
 server for original

requesting client
 client to origin server

 typically cache is
installed by ISP
(university,
company,
residential ISP)

why Web caching?
 reduce response time for

client request
 reduce traffic on an

institution’s access link

When is cache not good?
 Every client of the ISP

requests different content.
 Waste time on visiting

cache server

Application Layer 17

Caching example:

origin
servers

public
Internet

institutional
network 1 Gbps LAN

1.54 Mbps
access link

assumptions:
 avg object size: 100K bits
 avg request rate from browsers to

origin servers:15/sec
 avg data rate to browsers: 1.50 Mbps
 RTT from institutional router to any

origin server: 2 sec
 access link rate: 1.54 Mbps

consequences:
 LAN utilization: 15%
 access link utilization = 99%
 total delay = Internet delay + access

delay + LAN delay
= 2 sec + minutes + usecs

problem!

Application Layer 18

assumptions:
 avg object size: 100K bits
 avg request rate from browsers to

origin servers:15/sec
 avg data rate to browsers: 1.50 Mbps
 RTT from institutional router to any

origin server: 2 sec
 access link rate: 1.54 Mbps

consequences:
 LAN utilization: 15%
 access link utilization = 99%
 total delay = Internet delay + access

delay + LAN delay
= 2 sec + minutes + usecs

Caching example: fatter access
link

origin
servers

1.54 Mbps
access link

154 Mbps 154 Mbps

msecs

Cost: increased access link speed (not cheap!)

9.9%

public
Internet

institutional
network 1 Gbps LAN

institutional
network 1 Gbps LAN

Application Layer 19

Caching example: install local cache

origin
servers

1.54 Mbps
access link

local web
cache

assumptions:
 avg object size: 100K bits
 avg request rate from browsers to

origin servers:15/sec
 avg data rate to browsers: 1.50 Mbps
 RTT from institutional router to any

origin server: 2 sec
 access link rate: 1.54 Mbps

consequences:
 LAN utilization: 15%
 access link utilization = 100%
 total delay = Internet delay + access

delay + LAN delay
= 2 sec + minutes + usecs

?
?

How to compute link
utilization, delay?

Cost: web cache (cheap!)

public
Internet

Application Layer 20

Caching example: install local cache
Calculating access link

utilization, delay with cache:
suppose cache hit rate is 0.4

 40% requests satisfied at
cache, 60% requests satisfied
at origin

origin
servers

1.54 Mbps
access link

 access link utilization:
 60% of requests use access link

 data rate to browsers over access link
= 0.6*1.50 Mbps = .9 Mbps
 utilization = 0.9/1.54 = .58

 total delay
 = 0.6 * (delay from origin servers) +0.4

* (delay when satisfied at cache)
 = 0.6 (2.01) + 0.4 (~msecs)
 = ~ 1.2 secs
 less than with 154 Mbps link (and

cheaper too!)

public
Internet

institutional
network 1 Gbps LAN

local web
cache

 Interview with 2017 Turing award winner
Tim Berners-Lee, the inventor of WWW

 https://www.youtube.com/watch?v=GU6fW
HHu6Es

Application Layer 2-21

https://www.youtube.com/watch?v=GU6fWHHu6Es

Application Layer 22

Chapter 2: outline

2.1 principles of network
applications
 app architectures
 app requirements

2.2 Web and HTTP
2.4 electronic mail

 SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications
2.7 socket programming

with UDP and TCP

Application Layer 23

Electronic mail

Three major components:
 user agents
 mail servers
 simple mail transfer

protocol: SMTP

User Agent
 a.k.a. “mail reader”
 composing, editing, reading

mail messages
 e.g., Outlook, iPhone mail

client
 outgoing, incoming

messages stored on server

user mailbox

outgoing
message queue

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

Application Layer 24

Electronic mail: mail servers

mail servers:
 mailbox contains incoming

messages for user
 message queue of outgoing

(to be sent) mail messages
 SMTP protocol between

mail servers to send email
messages
 client: sending mail

server
 “server”: receiving mail

server

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

Application Layer 25

Electronic Mail: SMTP [RFC 2821]

 uses TCP to reliably transfer email message from
client to server, port 25

 direct transfer: sending server to receiving
server

 three phases of transfer
 handshaking (greeting)
 transfer of messages
 closure

Application Layer 26

user
agent

Scenario: Alice sends message to Bob

1) Alice uses UA to compose
message “to”
bob@someschool.edu

2) Alice’s UA sends message
to her mail server; message
placed in message queue

3) client side of SMTP opens
TCP connection with Bob’s
mail server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places the
message in Bob’s mailbox

6) Bob invokes his user agent
to read message

mail
server

mail
server

1

2 3 4
5

6

Alice’s mail server Bob’s mail server

user
agent

Application Layer 27

SMTP: final words

 SMTP uses persistent
connections

 SMTP requires message
(header & body) to be in
7-bit ASCII

comparison with HTTP:
 HTTP: pull
 SMTP: push

 both have ASCII
command/response
interaction, status codes

Application Layer 28

Mail access protocols

 SMTP: delivery/storage to receiver’s server
 mail access protocol: retrieval from server
 POP: Post Office Protocol [RFC 1939]: authorization,

download
 IMAP: Internet Mail Access Protocol [RFC 1730]: more

features, including manipulation of stored msgs on
server

 HTTP: gmail, Hotmail, Yahoo! Mail, etc.

sender’s mail
server

SMTP SMTP
mail access

protocol

receiver’s mail
server

(e.g., POP,
IMAP)

user
agent

user
agent

Application Layer 29

POP3 and IMAP
POP3
 POP3 “download and

delete” mode
 Bob cannot re-read e-

mail if he changes
client

 POP3 “download-and-
keep”: copies of messages
on different clients

 POP3 is stateless across
sessions

IMAP
 keeps all messages in one

place: at server
 allows user to organize

messages in folders
 keeps user state across

sessions:
 names of folders and

mappings between
message IDs and folder
name

Application Layer 30

Chapter 2: outline

2.1 principles of network
applications
 app architectures
 app requirements

2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

 SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications
2.7 socket programming

with UDP and TCP

Application Layer 31

DNS: domain name system

Internet hosts, routers:
 IP address (32 bit) -

used for addressing
datagrams

 “name”, e.g.,
www.yahoo.com -
used by humans

Q: how to map between IP
address and name, and
vice versa ?

Domain Name System:
 distributed database

implemented in hierarchy of
many name servers

 application-layer protocol: hosts,
name servers communicate to
resolve names (address/name
translation)

Application Layer 32

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS serversyahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

DNS: a distributed, hierarchical database

client wants IP for www.amazon.com; 1st approx:
 client queries root server to find com DNS server
 client queries .com DNS server to get amazon.com DNS server
 client queries amazon.com DNS server to get IP address for

www.amazon.com

… …

Application Layer 33

DNS: services, structure
why not centralize DNS?
 single point of failure
 traffic volume
 distant centralized database
 maintenance

DNS services
 hostname to IP address

translation

 load distribution
 replicated Web

servers: many IP
addresses correspond
to one name

A: doesn’t scale!

Application Layer 34

DNS: root name servers

 contacted by local name server that can not resolve name
 root name server:
 contacts authoritative name server if name mapping not known
 gets mapping
 returns mapping to local name server

13 root name
“servers”
worldwide

a. Verisign, Los Angeles CA
(5 other sites)

b. USC-ISI Marina del Rey, CA
l. ICANN Los Angeles, CA

(41 other sites)

e. NASA Mt View, CA
f. Internet Software C.
Palo Alto, CA (and 48 other
sites)

i. Netnod, Stockholm (37 other sites)

k. RIPE London (17 other sites)

m. WIDE Tokyo
(5 other sites)

c. Cogent, Herndon, VA (5 other sites)
d. U Maryland College Park, MD
h. ARL Aberdeen, MD
j. Verisign, Dulles VA (69 other sites)

g. US DoD Columbus,
OH (5 other sites)

Application Layer 35

TLD, authoritative servers

top-level domain (TLD) servers:
 responsible for com, org, net, edu, aero, jobs, museums,

and all top-level country domains, e.g.: uk, fr, ca, jp
 Network Solutions maintains servers for .com TLD
 Educause for .edu TLD

authoritative DNS servers:
 organization’s own DNS server(s), providing

authoritative hostname to IP mappings for organization’s
named hosts

 can be maintained by organization or service provider

Application Layer 36

Local DNS name server

 each ISP (residential ISP, company, university) has
one
 also called “default name server”

 when host makes DNS query, query is sent to its
local DNS server
 has local cache of recent name-to-address translation

pairs (but may be out of date!)
 acts as proxy, forwards query into hierarchy

Application Layer 37

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

78

TLD DNS server

DNS name
resolution example

 host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:
 contacted server

replies with name of
server to contact

 “I don’t know this
name, but ask this
server”

Application Layer 38

45

6

3

recursive query:
 puts burden of name

resolution on
contacted name
server

 heavy load at upper
levels of hierarchy?

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
7

authoritative DNS server
dns.cs.umass.edu

8

DNS name
resolution example

TLD DNS
server

Application Layer 39

DNS: caching, updating records

 once (any) name server learns mapping, it caches
mapping
 cache entries timeout (disappear) after some time (TTL)
 TLD servers typically cached in local name servers

• thus root name servers not often visited

 cached entries may be out-of-date (best effort
name-to-address translation!)
 if name host changes IP address, may not be known

Internet-wide until all TTLs expire

Attacking DNS

DDoS attacks
 Bombard root servers

with traffic
 Not successful to date
 Traffic Filtering
 Local DNS servers

cache IPs of TLD
servers, allowing root
server bypass

 Bombard TLD servers
 Potentially more

dangerous

Redirect attacks
 Man-in-middle
 Intercept queries

 DNS poisoning
 Send bogus relies to

DNS server, which
caches

Exploit DNS for DDoS
 Send queries with

spoofed source
address: target IP

 Requires amplification
Application Layer 40

Next class
 Please read Chapter 2.5-2.7 of your textbook

BEFORE Class

41

	CMPE 150/L : Introduction to�Computer Networks
	Any problem of your lab?
	Homework questions
	HTTP connections
	Non-persistent HTTP
	Non-persistent HTTP (cont.)
	Non-persistent HTTP: response time
	Persistent HTTP
	HTTP request message
	HTTP response message
	HTTP response status codes
	User-server state: cookies
	Cookies: keeping “state” (cont.)
	Cookies (continued)
	Web caches (proxy server)
	More about Web caching
	Caching example:
	Caching example: fatter access link
	Caching example: install local cache
	Caching example: install local cache
	Slide Number 21
	Chapter 2: outline
	Electronic mail
	Electronic mail: mail servers
	Electronic Mail: SMTP [RFC 2821]
	Scenario: Alice sends message to Bob
	SMTP: final words
	Mail access protocols
	POP3 and IMAP
	Chapter 2: outline
	DNS: domain name system
	DNS: a distributed, hierarchical database
	DNS: services, structure
	DNS: root name servers
	TLD, authoritative servers
	Local DNS name server
	DNS name �resolution example
	Slide Number 38
	DNS: caching, updating records
	Attacking DNS
	Next class

