CMPE 150/L : Introduction to
Computer Networks

Chen Qian
Computer Engineering
UCSC Baskin Engineering
Lecture 6

Midterm room for overflow
students

A The students who used my registration
code to enroll will be seated in another
room for exams. An Email will be sent to
them.

a Midterm:

2 Thu Feb 15 2018
1:30PM - 3:05PM
Space Assignment(s):
Crown 201

Introduction 1-2

Any problem of your lab?

A Due by this Sunday (Jan 29)

Homework questions

d Available on course website

Q Please work on them, but do not submit
your answers. The answers will be posted
later.

Introduction 1-4

Chapter 2: outline

2.1 principles of network 2.6 P2P applications

applications 2.7 socket programming

= app architectures with UDP and TCP
" app requirements

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
= SMTP, POP3, IMAP

2.5 DNS

Application Layer 5

DNS: domain name system

Internet hosts, routers: Domain Name System:
= |P address (32 bit) - < distributed database
used for addressing implemented in hierarchy of
datagrams many name servers
* “name”, e.g.,
www.yahoo.com - < application-layer protocol: hosts,
used by humans name servers communicate to
Q: how to map between IP resolve names (address/name
address and name, and translation)
vice versa !

Application Layer 6

DNS: a distributed, hierarchical database

Root DNS Servers

com DNS servers org DNS servers edu DNS servers
/ \ poly.edu umass.edu
yahoo.com amazon.com pbs.org
DNS servers DNS servers DNS servers DNS serversDNS servers

client wants IP for www.amazon.com; | approx:
+ client queries root server to find com DNS server
+ client queries .com DNS server to get amazon.com DNS server

+ client queries amazon.com DNS server to get IP address for
www.amazon.com

Application Layer 7

DNS: services, structure

why not centralize DNS?

DNS services

< hostname to IP address % single point of failure
translation + traffic volume
» distant centralized database
+ load distribution & maintenance
" replicated Web
servers: many IP A: doesn 't scale!

addresses correspond
to one name

Application Layer 8

DNS: root hame servers

+ contacted by local name server that can not resolve name
% root name server:

" contacts authoritative name server if name mapping not known
= gets mapping
" returns mapping to local name server

c. Cogent, Herndon, VA (5 other sites)
d. U Maryland College Park, MD k. RIPE London (17 other sites)
h. ARL Aberdeen, MD

j. Verisign, Dulles VA (69 other sites) i. Netnod, Stockholm (37 other sites)
e. NASA Mt View, CA) - m. WIDE Tokyo

f. Internet Software C. (5 other sites)
Palo Alto, CA (and 48 other — |

sites) \

a. Verisign, Los Angeles CA
(5 other sites)
b. USC-ISI Marina del Rey, CA
|. ICANN Los Angeles, CA
(41 other sites)

13 root name
“server_s 7
worldwide

g. US DoD Columbus,
OH (5 other sites)

Application Layer

9

TLD, authoritative servers

top-level domain (TLD) servers:

" responsible for com, org, net, edu, aero, jobs, museums,
and all top-level country domains, e.g.: uk, fr, ca, jp

= Network Solutions maintains servers for .com TLD
" Educause for .edu TLD

authoritative DNS servers:

= organization s own DNS server(s), providing
authoritative hostname to IP mappings for organization s
named hosts

" can be maintained by organization or service provider

Application Layer 10

Local DNS name server

+ each ISP (residential ISP, company, university) has
one

» also called “default name server’
< when host makes DNS query, query is sent to its
local DNS server

= has local cache of recent name-to-address translation
pairs (but may be out of date!)

" acts as proxy, forwards query into hierarchy

Application Layer 11

DNS name

resolution example 1

+ host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:

< contacted server
replies with name of
server to contact

< “l don’ t know this
name, but ask this
7
server

root DNS server

, /M
3
TLD DNS server

' N
ol AN
v
o

t

local DNS serve
dns.poly.edu

6 =
gl

q authoritative DNS server
e dns.cs.umass.edu

—

requesting host
cis.poly.edu

o

gaia.cs.umass.edu

Application Layer 12

DNS name

resolution example

recursive query:

00

» puts burden of name
resolution on
contacted name
server

4

> heavy load at upper
levels of hierarchy?

D)

root DNS server

t
local DNS server J
dns.poly.edu 5144

q authoritative DNS server
e dns.cs.umass.edu
requesting host

cis.poly.edu
=

gaia.cs.umass.edu

Application Layer 13

DNS: caching, updating records

% once (any) name server learns mapping, it caches
mapping
" cache entries timeout (disappear) after some time (TTL)
= TLD servers typically cached in local name servers

* thus root name servers not often visited

% cached entries may be out-of-date (best effort
name-to-address translation!)

* if name host changes |IP address, may not be known
Internet-wide until all TTLs expire

Application Layer 14

Chapter 2: outline

2.1 principles of network 2.6 P2P applications

applications 2.7 socket programming

= app architectures with UDP and TCP
" app requirements

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
= SMTP, POP3, IMAP

2.5 DNS

Application Layer 2-15

P2P architecture

<+ no always-on server

<« arbitrary end systems directly
communicate

» peers are intermittently connected
and change |P addresses

examples:
= file distribution (BitTorrent)

= Streaming (KanKan)
* VolP (Skype)

<+ However, most of them
requires a central server to
manage the peers

Application Layer 2-16

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from
one server to N peers!?

* peer upload/download capacity is limited resource

u.: server upload
capacity

d,: peer i download
capacity

network (with abundant) I =D
bandwidth) =g

u;: peer i upload
capacity

Application Layer 2-17

File distribution time: client-server

< server transmission; must
sequentially send (upload) N E
file copies:

= time to send one copy: F/u, ,
= time to send N copies: NF/u g

< client: each client must

download file copy

= d_., = min client download rate

" min client download time: F/d_ ..

time to distribute F

to N clients using
client-server approach DC-S 2 max{>|:/us,’|:/dmin}

/

iIncreases linearly in N

Application Layer 2-18

File distribution time: P2P

<% Server transmission: must
upload at least one copy

= time to send one copy: Flu,

% client: each client must q
e

download file copy
" min client download time: F/d .

% clients: as aggregate must download NF bits
= max upload rate (limting max download rate) is u, + 2u.

time to distribute F

° szcge;;;r%igﬁ DPZP 2 max{l:/us,’F/dmin&\I F/(US + Zui)}

/
Increases linearly in N ... /
... but so does this, as each peer brings service capacity

Application Layer 2-19

Client-server vs. P2P: example

client upload rate = u, F/u=1 hour, u,=10u, d., 2 U,

Minimum Distribution Time

3.5

w
|

N
ol
|

N
|

=
(6]
|

=
|

o
ol
|

= P2P
—-o— Client-Server

o

Application Layer 2-20

P2P file distribution: BitTorrent

< file divided into 256Kb chunks
< peers in torrent send/receive file chunks

tracker: tracks peers torrent: group of peers
participating in torrent exchanging chunks of a file

B 3 B

Alice arrives ...
... obtains list

of peers from tracker V{
... and begins exchanging ==

file chunks with peers in torrent

4

Application Layer 2-21

P2P file distribution: BitTorrent

< peer joining torrent: E/

= has no chunks, but will
accumulate them over time w««.
from other peers

" registers with tracker to get < g
list of peers, connects to ; =
subset of peers
(“neighbors”)

X3

%

while downloading, peer uploads chunks to other peers
peer may change peers with whom it exchanges chunks
churn: peers may come and go

once peer has entire file, it may (selfishly) leave or
(altruistically) remain in torrent

X3

%

X3

%

X3

%

Application Layer 2-22

BitTorrent: requesting, sending file chunks

requesting chunks: sending chunks: tit-for-tat

+ at any given time, different < Alice sends chunks to those
peers have different subsets four peers ;urrently sending her
of file chunks chunks at hlgheSt rate

. iodically. Ali | h = other peers are choked by Alice

+ periodically, AllCE asks €ac (do not receive chunks from her)
peer for list of chunks that = re-evaluate top 4 every|0 secs
they have < every 30 secs: randomly select

< Alice requests missing another peer, starts sending
chunks from peers, rarest chunks i
first = “optimistically unchoke™ this peer

" newly chosen peer may join top 4

Application Layer 2-23

Chapter 2: outline

2.1 principles of network 2.6 P2P applications

applications 2.7 socket programming

" app architectures with UDP and TCP
" app requirements

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
= SMTP, POP3, IMAP

2.5 DNS

Application Layer 2-24

Socket programming

goal: learn how to build client/server applications that
communicate using sockets

socket: door between application process and end-
end-transport protocol

application

socket \

application

controlled by
app developer

controlled
by OS

T' \

Application Layer 2-25

Internet

Socket programming

Two socket types for two transport services:
= UDP: unreliable datagram
= TCP: reliable, byte stream-oriented

Application Layer 2-26

Socket programming with UDP

UDP: no “connection” between client & server
+ no handshaking before sending data

<+ sender explicitly attaches IP destination address and
port # to each packet

» rcvr extracts sender IP address and port# from
received packet

UDP: transmitted data may be lost or received
out-of-order

Application viewpoint:
“»* UDP provides unreliable transfer of groups of bytes
(“datagrams”) between client and server

Application Layer 2-27

Client/server socket interaction: UDP

server (running on serverIP)

create socket, port= x:

serverSocket =
socket(AF_INET,SOCK_DGRAM)

read datagram f;am/

serverSocket

write reply to —
serverSocket —
specifying

client address,

port number

client

create socket:

clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and
port=x; send datagram via
clientSocket

read 'datagram from
clientSocket

close
clientSocket

Application 2-28

Example app: UDP client

Python UDPClient
include Python'’s socket

library ~ from socket import *
serverName = ‘hostname’
serverPort = 12000
create UDP socket for clientSocket = socket(socket.AF_INET,
server socket.SOCK_DGRAM)
message = raw_input(’Input lowercase sentence:’)

> clientSocket.sendto(message,(serverName, serverPort))
Attach server name, port to .
message; send into socket— ModifiedMessage, serverAddress =

get user keyboard
input

socket into string print modifiedMessage

clientSocket.close()
print out received string ——»

and close socket

Application Layer 2-29

ExamEIe app: UDP server

Python UDPServer

from socket import *

serverPort = 12000
- serverSocket = socket(AF_INET, SOCK_DGRAM)
' serverSocket.bind((", serverPort))

create UDP socket

bind socket to local port

number 12000 print “The server is ready to receive”

while 1.:
loop forever > message, clientAddress = serverSocket.recvfrom(2048)
Read from UDP socket into _ modifiedMessage = message.upper()

message, getting client’s . .
address (client IP and port) serverSocket.sendto(modifiedMessage, clientAddress)

send upper case string —

back to this client

Application Layer 2-30

Socket programming with TCP

client must contact server + when contacted by client,
+ server process must first be server TCP creates new socket
running for server process to

. server must have created communicate with that

socket (door) that particular client |
welcomes client’ s contact = allows server to talk with

multiple clients
" source port numbers used

% Creating TCP socket, to distinguish clients

specifying IP address, port (more in Chap 3)

number of server process
« when client creates socket:

client TCP establishes

connection to server TCP

4

D)

L)

client contacts server by:

Application Layer 2-31

Client/server socket interaction: TCP

server (running on hostid) client

create socket,

port=x, for incoming
request:

serverSocket = socket()

wait for incoming TCP create socket,

connection requUESt €= == == =" == == == = connectto hostid, port=x
connectionSocket= CONNECtion setup clientSocket = socket()

serverSocket.accept()

\ 4

—_— 1 send request using
read request from / clientSocket
connectionSocket
write reply to |
connectionSocket — read reply from

clientSocket

!

close 1

connectionSocket C|_OSG 1
clientSocket

Application Layer 2-32

Example app: TCP client

create TCP socket for
server, remote port 12000

No need to attach server
name, port

Python TCPClient

from socket import *

serverName = 'servername’

serverPort = 12000

clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect((serverName,serverPort))
sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence)

—»modifiedSentence = clientSocket.recv(1024)

print ‘From Server:’, modifiedSentence
clientSocket.close()

Application Layer 2-33

Example app: TCP server

Python TCPServer

from socket import *

create TCP welcomin serverPort = 12000
: serverSocket = socket(AF_INET,SOCK_STREAM)

socket >
serverSocket.bind((",serverPort))

server begins listening for Se_rverSocket.hstgn(l) _
incoming TCP requests . print ‘The server is ready to receive’

while 1:
connectionSocket, addr = serverSocket.accept()

loop forever

4

»

server wqits on accept()
for incoming requests, new sentence = connectionSocket.recv(1024)

socket created on return T
capitalizedSentence = sentence.upper()
read bytes from socket (but g connect!onSocket.send(capltal|zedSentence)
not address as in UDP) connectionSocket.close()

close connection to this ———
client (but not welcoming

socket)
Application Layer 2-34

Chapter 2: summary

our study of network apps now complete!

< application architectures < specific protocols:

= client-server = HTTP

= P2P = SMTP, POP, IMAP
+ application service = DNS

requirements: = P2P:BitTorrent, DHT

= reliability, bandwidth, delay < socket programming: TCP,
» Internet transport service UDP sockets

model

= connection-oriented,

reliable: TCP

" unreliable, datagrams: UDP

Application Layer 2-35

Next class

<+ Lab assignment due by this Sunday!

+ Please read Chapter 3.1-3.3 of your textbook
BEFORE Class

36

	CMPE 150/L : Introduction to�Computer Networks
	Midterm room for overflow students
	Any problem of your lab?
	Homework questions
	Chapter 2: outline
	DNS: domain name system
	DNS: a distributed, hierarchical database
	DNS: services, structure
	DNS: root name servers
	TLD, authoritative servers
	Local DNS name server
	DNS name �resolution example
	Slide Number 13
	DNS: caching, updating records
	Chapter 2: outline
	P2P architecture
	File distribution: client-server vs P2P
	File distribution time: client-server
	File distribution time: P2P
	Slide Number 20
	P2P file distribution: BitTorrent
	Slide Number 22
	BitTorrent: requesting, sending file chunks
	Chapter 2: outline
	Socket programming
	Socket programming
	Socket programming with UDP
	Client/server socket interaction: UDP
	Slide Number 29
	Slide Number 30
	Socket programming with TCP
	Client/server socket interaction: TCP
	Slide Number 33
	Slide Number 34
	Chapter 2: summary
	Next class

