CMPE 150/L : Introduction to
Computer Networks

Chen Qian
Computer Engineering
UCSC Baskin Engineering
Lecture 9

Chapter 3 outline

3.1 transport-layer 3.5 connection-oriented
services transport: TCP

3.2 multiplexing and " segment structure
demultiplexing = reliable data transfer

3.3 connectionless " flow control
transport: UDP " connection management

3.4 principles of reliable 3.6 principles of congestion
data transfer control

3.7 TCP congestion control

Pipelined protocols: overview

Go-back-N:

% sender can have up to
N unacked packets in
pipeline

% receiver only sends
cumulative ack

= doesn’ t ack packet if
there’ s a gap

< sender has timer for
oldest unacked packet

" when timer expires,
retransmit all unacked
packets

Selective Repeat:

+ sender can have up to N
unack’ ed packets in
pipeline

< rcvr sends individual ack
for each packet

< sender maintains timer
for each unacked packet

= when timer expires,
retransmit only that
unacked packet

Transport Layer 3-3

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-4

TC P: Ove I‘VieW RFCs: 793,1122,1323, 2018, 2581

% point-to-point:
® one sender, one receiver
<+ reliable, in-order byte
steam:

" no “message
. »
boundaries

<+ pipelined:
= TCP congestion and

flow control set window
size

< full duplex data:

» bi-directional data flow
iIn same connection

= MSS: maximum segment
size
< connection-oriented:

* handshaking (exchange
of control msgs) inits
sender, receiver state
before data exchange

< flow controlled:

» sender will not
overwhelm receiver

Transport Layer 3-5

TCP sesment structure

p 32 bits >
URG: urgent data countin
g
(generally not used)\ source port # | dest port # by bytes
ACK: ACK # . Sequence number of data
valid ™ \kngwledgement number (not segments!)

PSH: push data now
(generally not used) —|

bytes
rcvr willing

head|n
len us;d ‘EAP RISIF| receive window
7

Urg data pointer

RST, SYN, FIN:/

to accept

op/{ s (variable length)

connection estab
(setup, teardown
commands)

Internet /

checksum
(as in UDP)

/ application

data
(variable length)

Transport Layer 3-6

TCP seq. numbers, ACKs

outgoing segment from sender

sequence numbers:

"byte stream number of
first byte in segment’ s
data

acknowledgements:

"seq # of next byte
expected from other side

= cumulative ACK

source port # dest port #
seguence number
acknowledgement number
| | rwnd
checksum urg pointer
wmdow SI

sender sequence number space

sent
ACKed

sent, not- usable not
yet ACKed but not usable
(“in- yet sent

flight”)

iIncoming segment to sender

source port #

dest port #

A

sequence number

acknowledgement number

rwnd

checksum

urg pointer

Transport Layer 3-7

TCP seq. numbers, ACKs

Host A Host B
User =
types
‘C, \

Seq=42, ACK=79,-datai‘CL

Seq=79, ACK=43, data= ‘C’

host ACKs /

receipt

of echoed ——__
‘C’ Seq=43, ACK:K

simple telnet scenario

host ACKs
receipt of
‘C’, echoes
back ‘C’

Transport Layer 3-8

TCP round trip time, timeout

Q: how to set TCP
timeout value?

+ longer than RTT
= but RTT varies
< too short: premature

timeout, unnecessary
retransmissions

< too long: slow reaction
to segment loss

Q: how to estimate RTT?
+» SampleRTT: measured

time from segment
transmission until ACK
receipt

" jgnore retransmissions

+» SampleRTT will vary, want

estimated RTT “smoother”

" average several recent
measurements, not just
current SampleRTT

Transport Layer 3-9

TCP round trip time, timeout

EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT

+» exponential weighted moving average
+ influence of past sample decreases exponentially fast
+ typical value:a =0.125

350 ~

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr ,

’(/? 300 1
©
c
: \ I
2 % 1 T I 1
E
l: 200 1
%
& sampleRTT
EstimatedRTT

100

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconds) Transport Layer 3-10

TCP round trip time, timeout

<« timeout interval: EstimatedRTT plus “safety margin”
" |arge variation in EStimatedRTT -> larger safety margin
+ estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-B)*DevRTT +
B*|SampleRTT-EstimatedRTT]

(typically, B = 0.25)

Timeoutlnterval = EstimatedRTT + 4*DevRTT

p- | |

estimated RTT “safety margin”

Transport Layer 3-11

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-12

TCP reliable data transfer

& | CP creates rdt service
on top of IP’ s unreliable

service
" pipelined segments ,
= cumulative acks let” s initially consider
= single retransmission simplified TCP sender:
timer " ignore duplicate acks
& retransmissions " ignore flow control,
triggered by: congestion control

" timeout events
" duplicate acks

Transport Layer 3-13

TCP sender events:

data rcvd from app:

% create segment with
seq #

% seq # is byte-stream
number of first data
byte in segment

& start timer if not
already running
= think of timer as for

oldest unacked
segment

= expiration interval:
TimeOutinterval

timeout:

% retransmit segment
that caused timeout

< restart timer
ack revd:

< if ack acknowledges
previously unacked
segments

= update what is known
to be ACKed

" start timer if there are
still unacked segments

Transport Layer 3-14

TCP sender (simplified)

data received from application above

create segment, seq. #: NextSeqNum
pass segment to IP (i.e., “send”)

NextSegNum = NextSegNum + length(data)
if (timer currently not running)
A start timer
NextSegNum = InitialSegNum
SendBase = InitialSeqNum
timeout

retransmit not-yet-acked segment
with smallest seq. #
start timer

ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y
[* SendBase—1: last cumulatively ACKed byte */
if (there are currently not-yet-acked segments)
start timer
else stop timer

}

Transport Layer 3-15

TCP: retransmission scenarios

le—— timeout —*

Host B

\
Seq=92, 8 bytes of data
/
ACK=100
X

Seq=92, 8 bytes of data

/

ACK=100

—

lost ACK scenario

/

SendBase=92

le—— timeout —

SendBase=100
SendBase=120

SendBase=120

g

Host A Host B
\
Seq=92, 8 bytes of data
\ \

Seq=100, 20 bytes of dat

ACKzlo/

ACK=120

Seq=92, 8
bytes of data\

\

ACK=120

—

premature timeout

Transport Layer 3-16

TCP: retransmission scenarios

Host A Hos
[V/ \al
v =
\
Seq=92, 8 bytes of data
\ \

l——— timeout

Seg=100, 20 bytes of d

ACK=100
X

\k

ACK=120

\

Seq=120, 15 bytes of data

/

cumulative ACK

tB

Transport Layer 3-17

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver TCP receiver action

arrival of in-order segment with delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

arrival of in-order segment with immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

arrival of out-of-order segment immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte

Gap detected

arrival of segment that immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-18

TCP fast retransmit

% time-out period often
relatively long:

* long delay before
resending lost packet

+ detect lost segments
via duplicate ACKs.

= sender often sends
many segments back-
to-back

" if segment is lost, there
will likely be many

duplicate ACKs.

— TCP fast retransmit —

if sender receives 3
ACKs for same data

(“triple duplicate ACKs"),
resend unacked
segment with smallest
seq #

" |ikely that unacked

segment lost, so don’ t
wait for timeout

Transport Layer 3-19

TCP fast retransmit

Host A Host

g e

— Seq=92, 8 bytes of data

\seqzloow
\X

ACK=100

ACK=100

“ﬁ(zloo

/
ACK=100

<
Seq=100, 20 bytes of data

\.

v VL

fast retransmit after sender
receipt of triple duplicate ACK

b=

timeout

A4

Transport Layer 3-20

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-21

TCP flow control

application may

remove data from

TCP socket buffers

... Slower than TCP
receiver is delivering —
(sender is sending)

— flow control
receiver controls sender, so

sender won’ t overflow
receiver s buffer by transmitting
too much, too fast

TCP socket 0S
receiver buffers
N\
.)
TCP
code
[] .
1P
code '
| o
m] , Q

| |
from sender

receiver protocol stack

Transport Layer 3-22

TCP flow control

R/
0’0

X/
0’0

X/
0’0

receiver “advertises’ free
buffer space by including
rwnd value in TCP header
of receiver-to-sender
segments

= RcvBuffer size set via

socket options (typical default
is 4096 bytes)

" many operating systems
autoadjust RcvBuffer
sender limits amount of
unacked (“in-flight”) data to
receiver s rwnd value

guarantees receive buffer
will not overflow

to application process

?
RcvBuffer

T

rwnd

Ly

FI_‘

buffered data

free buffer space

1

TCP segment payloads

recelver-side buffering

Transport Layer 3-23

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-24

Connection Management

before exchanging data, sender/receiver “handshake”:
agree to establish connection (each knowing the other willing
to establish connection)

<« agree on connection Parameters

>

K/
0’0

application
O
connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
rcvBuffer size
at server,client

application

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer size
at server,client

V{ network
Socket connectionSocket =

Socket clientSocket =
newSocket(""*hostname™, " port welcomeSocket.accept();

number'™) ;

network

Transport Layer 3-25

Agreeing to establish a connection

2-way handshake:
Q: will 2-way handshake

always work in
network!?
<+ variable delays

% retransmitted messages
(e.g. req_conn(x)) due to
message loss

| % message reordering
” 111 ” .
& can t see other side

choose X \req_conn ()iL,

— ESTAB

acc_conn(x)
ESTAB &

Transport Layer 3-26

Agreeing to establish a connection

2-way handshake failure scenarios:

choose x

retransmit
req_conn(x)

ESTAB

client™

terminates

\
req_conn(>_<L‘

D

A ESTAB

acc_conn(x)

req_conn(x)

\

_ connection
X completes

server
forgets x

ESTAB

half open connection!
(no client!)

choose x

retransmit
req_conn(x)

ESTAB
retransmit
data(x+1) ™\
L. connection
client X co‘mpletes
terminates

\req_conn(>_<L‘
A

acc_conn(x)

2d§a(x+ 1)\"

reg_conn(x)

data(x+1)

ESTAB

accept
data(x+1)

server
forgets x

ESTAB
accept
data(x+1)

Transport Layer 3-27

TCP 3-way handshake

client state Vf =
LISTEN — '

server state

I LISTEN

choose init seq num, x

send TCP SYN msg |~

SYNSENT SYNbit=1, Seq=x
choose init seq num, y
send TCP SYNACK

/ msg, acking SYN SYN RCVD

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

v received SYNACK(x) /

indicates server is live;
ESTAB end ACK for SYNACK: |~

this segment may contain ACKbit=1, ACKnum=y+1

client-to-server data _
\ received ACK(y)
indicates client is live

v

ESTAB

Transport Layer 3-28

TCP: closing a connection

« client, server each close their side of connection
= send TCP segment with FIN bit = |

+ respond to received FIN with ACK

" on receiving FIN, ACK can be combined with own FIN
<+ simultaneous FIN exchanges can be handled

Transport Layer 3-29

TCP: closing a connection

client state

ESTAB

A

FIN

A

FIN

CLOSED

WAIT 1

WAIT 2

TIMED_WAIT \

clientSocket.close()

can no longer
send but can
receive data

wait for server
close

timed wait
for 2*max
segment lifetime

|

4

\FINb't 1
it=1, SGK

- /
ACKbit=1; ACKnum=x+1

—

‘)Nbitzl, seq=y
\

ACKbit=1; ACKnum=y+1

/

\

can still
send data

can no longer
send data

server state

ESTAB

v

CLOSE_WAIT

LAST_ACK

v

CLOSED

Transport Layer 3-30

Next class

+ Please read Chapter 3.7-3.8 of your textbook
BEFORE Class

31

	CMPE 150/L : Introduction to�Computer Networks
	Chapter 3 outline
	Pipelined protocols: overview
	Chapter 3 outline
	TCP: Overview RFCs: 793,1122,1323, 2018, 2581
	TCP segment structure
	TCP seq. numbers, ACKs
	TCP seq. numbers, ACKs
	TCP round trip time, timeout
	TCP round trip time, timeout
	TCP round trip time, timeout
	Chapter 3 outline
	TCP reliable data transfer
	TCP sender events:
	TCP sender (simplified)
	TCP: retransmission scenarios
	TCP: retransmission scenarios
	TCP ACK generation [RFC 1122, RFC 2581]
	TCP fast retransmit
	TCP fast retransmit
	Chapter 3 outline
	TCP flow control
	TCP flow control
	Chapter 3 outline
	Connection Management
	Agreeing to establish a connection
	Agreeing to establish a connection
	TCP 3-way handshake
	TCP: closing a connection
	TCP: closing a connection
	Next class

