
CMPE 150/L : Introduction to
Computer Networks

Chen Qian
Computer Engineering

UCSC Baskin Engineering
Lecture 9

1

2

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
 segment structure
 reliable data transfer
 flow control
 connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-3

Pipelined protocols: overview

Go-back-N:
 sender can have up to

N unacked packets in
pipeline

 receiver only sends
cumulative ack
 doesn’t ack packet if

there’s a gap
 sender has timer for

oldest unacked packet
 when timer expires,

retransmit all unacked
packets

Selective Repeat:
 sender can have up to N

unack’ed packets in
pipeline

 rcvr sends individual ack
for each packet

 sender maintains timer
for each unacked packet
 when timer expires,

retransmit only that
unacked packet

Transport Layer 3-4

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
 segment structure
 reliable data transfer
 flow control
 connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-5

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

 full duplex data:
 bi-directional data flow

in same connection
 MSS: maximum segment

size
 connection-oriented:
 handshaking (exchange

of control msgs) inits
sender, receiver state
before data exchange

 flow controlled:
 sender will not

overwhelm receiver

 point-to-point:
 one sender, one receiver

 reliable, in-order byte
steam:
 no “message

boundaries”
 pipelined:
 TCP congestion and

flow control set window
size

Transport Layer 3-6

TCP segment structure

source port # dest port #

32 bits

application
data
(variable length)

sequence number
acknowledgement number

receive window

Urg data pointerchecksum
FSRPAUhead

len
not
used

options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Transport Layer 3-7

TCP seq. numbers, ACKs
sequence numbers:
byte stream “number” of
first byte in segment’s
data

acknowledgements:
seq # of next byte
expected from other side
cumulative ACK

source port # dest port #

sequence number
acknowledgement number

checksum

rwnd
urg pointer

incoming segment to sender

A

sent
ACKed

sent, not-
yet ACKed
(“in-
flight”)

usable
but not
yet sent

not
usable

window size
N

sender sequence number space

source port # dest port #

sequence number
acknowledgement number

checksum

rwnd
urg pointer

outgoing segment from sender

Transport Layer 3-8

TCP seq. numbers, ACKs

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Transport Layer 3-9

TCP round trip time, timeout

Q: how to set TCP
timeout value?

 longer than RTT
 but RTT varies

 too short: premature
timeout, unnecessary
retransmissions

 too long: slow reaction
to segment loss

Q: how to estimate RTT?
 SampleRTT: measured

time from segment
transmission until ACK
receipt
 ignore retransmissions

 SampleRTT will vary, want
estimated RTT “smoother”
 average several recent

measurements, not just
current SampleRTT

Transport Layer 3-10

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT

EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

 exponential weighted moving average
 influence of past sample decreases exponentially fast
 typical value: α = 0.125

TCP round trip time, timeout

RT
T

(m
illi

se
co

nd
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT
EstimatedRTT

time (seconds)

Transport Layer 3-11

 timeout interval: EstimatedRTT plus “safety margin”
 large variation in EstimatedRTT -> larger safety margin

 estimate SampleRTT deviation from EstimatedRTT:
DevRTT = (1-β)*DevRTT +

β*|SampleRTT-EstimatedRTT|

TCP round trip time, timeout

(typically, β = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

Transport Layer 3-12

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
 segment structure
 reliable data transfer
 flow control
 connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-13

TCP reliable data transfer

 TCP creates rdt service
on top of IP’s unreliable
service
 pipelined segments
 cumulative acks
 single retransmission

timer
 retransmissions

triggered by:
 timeout events
 duplicate acks

let’s initially consider
simplified TCP sender:
 ignore duplicate acks
 ignore flow control,

congestion control

Transport Layer 3-14

TCP sender events:
data rcvd from app:
 create segment with

seq #
 seq # is byte-stream

number of first data
byte in segment

 start timer if not
already running
 think of timer as for

oldest unacked
segment
 expiration interval:
TimeOutInterval

timeout:
 retransmit segment

that caused timeout
 restart timer
ack rcvd:
 if ack acknowledges

previously unacked
segments
 update what is known

to be ACKed
 start timer if there are

still unacked segments

Transport Layer 3-15

TCP sender (simplified)

wait
for
event

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

Λ

create segment, seq. #: NextSeqNum
pass segment to IP (i.e., “send”)
NextSeqNum = NextSeqNum + length(data)
if (timer currently not running)

start timer

data received from application above

retransmit not-yet-acked segment
with smallest seq. #

start timer

timeout

if (y > SendBase) {
SendBase = y
/* SendBase–1: last cumulatively ACKed byte */
if (there are currently not-yet-acked segments)

start timer
else stop timer

}

ACK received, with ACK field value y

Transport Layer 3-16

TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

Xtim
eo

ut

ACK=100

premature timeout

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8
bytes of data

tim
eo

ut

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

Transport Layer 3-17

TCP: retransmission scenarios

X

cumulative ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

tim
eo

ut

Seq=100, 20 bytes of data

ACK=120

Transport Layer 3-18

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative
ACK, ACKing both in-order segments

immediately send duplicate ACK,
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap

Transport Layer 3-19

TCP fast retransmit

 time-out period often
relatively long:
 long delay before

resending lost packet
 detect lost segments

via duplicate ACKs.
 sender often sends

many segments back-
to-back
 if segment is lost, there

will likely be many
duplicate ACKs.

if sender receives 3
ACKs for same data
(“triple duplicate ACKs”),
resend unacked
segment with smallest
seq #
 likely that unacked

segment lost, so don’t
wait for timeout

TCP fast retransmit

(“triple duplicate ACKs”),

Transport Layer 3-20

X

fast retransmit after sender
receipt of triple duplicate ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

tim
eo

ut ACK=100

ACK=100
ACK=100

TCP fast retransmit

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

Transport Layer 3-21

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
 segment structure
 reliable data transfer
 flow control
 connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-22

TCP flow control
application
process

TCP socket
receiver buffers

TCP
code

IP
code

application
OS

receiver protocol stack

application may
remove data from

TCP socket buffers ….

… slower than TCP
receiver is delivering
(sender is sending)

from sender

receiver controls sender, so
sender won’t overflow
receiver’s buffer by transmitting
too much, too fast

flow control

Transport Layer 3-23

TCP flow control

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process
 receiver “advertises” free

buffer space by including
rwnd value in TCP header
of receiver-to-sender
segments
 RcvBuffer size set via

socket options (typical default
is 4096 bytes)

 many operating systems
autoadjust RcvBuffer

 sender limits amount of
unacked (“in-flight”) data to
receiver’s rwnd value

 guarantees receive buffer
will not overflow

receiver-side buffering

Transport Layer 3-24

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
 segment structure
 reliable data transfer
 flow control
 connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-25

Connection Management
before exchanging data, sender/receiver “handshake”:
 agree to establish connection (each knowing the other willing

to establish connection)
 agree on connection parameters

connection state: ESTAB
connection variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client

application

network

Socket clientSocket =
newSocket("hostname","port
number");

Socket connectionSocket =
welcomeSocket.accept();

Transport Layer 3-26

Q: will 2-way handshake
always work in
network?

 variable delays
 retransmitted messages

(e.g. req_conn(x)) due to
message loss

 message reordering
 can’t “see” other side

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x req_conn(x)
ESTAB

ESTAB
acc_conn(x)

Agreeing to establish a connection

Transport Layer 3-27

Agreeing to establish a connection

2-way handshake failure scenarios:

retransmit
req_conn(x)

ESTAB

req_conn(x)

half open connection!
(no client!)

client
terminates

server
forgets x

connection
x completes

retransmit
req_conn(x)

ESTAB

req_conn(x)

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

client
terminates

ESTAB

choose x
req_conn(x)

ESTAB
acc_conn(x)

data(x+1) accept
data(x+1)

connection
x completes server

forgets x

Transport Layer 3-28

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data received ACK(y)

indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state
LISTEN

server state
LISTEN

Transport Layer 3-29

TCP: closing a connection

 client, server each close their side of connection
 send TCP segment with FIN bit = 1

 respond to received FIN with ACK
 on receiving FIN, ACK can be combined with own FIN

 simultaneous FIN exchanges can be handled

Transport Layer 3-30

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait
for 2*max

segment lifetime

CLOSED

TCP: closing a connection

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state
ESTABESTAB

Next class

 Please read Chapter 3.7-3.8 of your textbook
BEFORE Class

31

	CMPE 150/L : Introduction to�Computer Networks
	Chapter 3 outline
	Pipelined protocols: overview
	Chapter 3 outline
	TCP: Overview RFCs: 793,1122,1323, 2018, 2581
	TCP segment structure
	TCP seq. numbers, ACKs
	TCP seq. numbers, ACKs
	TCP round trip time, timeout
	TCP round trip time, timeout
	TCP round trip time, timeout
	Chapter 3 outline
	TCP reliable data transfer
	TCP sender events:
	TCP sender (simplified)
	TCP: retransmission scenarios
	TCP: retransmission scenarios
	TCP ACK generation [RFC 1122, RFC 2581]
	TCP fast retransmit
	TCP fast retransmit
	Chapter 3 outline
	TCP flow control
	TCP flow control
	Chapter 3 outline
	Connection Management
	Agreeing to establish a connection
	Agreeing to establish a connection
	TCP 3-way handshake
	TCP: closing a connection
	TCP: closing a connection
	Next class

