<u>CMPE 150/L : Introduction to</u> <u>Computer Networks</u>

> Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 9

Chapter 3 outline

- 3.1 transport-layer services
- 3.2 multiplexing and demultiplexing
- 3.3 connectionless transport: UDP
- 3.4 principles of reliable data transfer

- 3.5 connection-oriented transport: TCP
 - segment structure
 - reliable data transfer
 - flow control
 - connection management
- 3.6 principles of congestion control
- 3.7 TCP congestion control

Pipelined protocols: overview

Go-back-N:

- sender can have up to N unacked packets in pipeline
- receiver only sends
 cumulative ack
 - doesn't ack packet if there's a gap
- sender has timer for oldest unacked packet
 - when timer expires, retransmit *all* unacked packets

Selective Repeat:

- sender can have up to N unack' ed packets in pipeline
- rcvr sends individual ack for each packet

- sender maintains timer
 for each unacked packet
 - when timer expires, retransmit only that unacked packet

Chapter 3 outline

- 3.1 transport-layer services
- 3.2 multiplexing and demultiplexing
- 3.3 connectionless transport: UDP
- 3.4 principles of reliable data transfer

- 3.5 connection-oriented transport: TCP
 - segment structure
 - reliable data transfer
 - flow control
 - connection management
- 3.6 principles of congestion control
- 3.7 TCP congestion control

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

- point-to-point:
 - one sender, one receiver
- reliable, in-order byte steam:
 - no "message boundaries"
- * pipelined:
 - TCP congestion and flow control set window size

full duplex data:

- bi-directional data flow in same connection
- MSS: maximum segment size
- connection-oriented:
 - handshaking (exchange of control msgs) inits sender, receiver state before data exchange
- Iow controlled:
 - sender will not overwhelm receiver

TCP segment structure

TCP seq. numbers, ACKs

sequence numbers:

byte stream "number" of first byte in segment's data

acknowledgements:

- seq # of next byte expected from other side
- cumulative ACK

outgoing segment from sender

TCP seq. numbers, ACKs

simple telnet scenario

TCP round trip time, timeout

- Q: how to set TCP timeout value?
- Ionger than RTT
 - but RTT varies
- too short: premature timeout, unnecessary retransmissions
- too long: slow reaction to segment loss

- Q: how to estimate RTT?
- SampleRTT: measured time from segment transmission until ACK receipt
 - ignore retransmissions
- SampleRTT will vary, want estimated RTT "smoother"
 - average several recent measurements, not just current SampleRTT

TCP round trip time, timeout

EstimatedRTT = $(1 - \alpha)$ *EstimatedRTT + α *SampleRTT

- exponential weighted moving average
- influence of past sample decreases exponentially fast
- * typical value: $\alpha = 0.125$

TCP round trip time, timeout

* timeout interval: EstimatedRTT plus "safety margin"

- Iarge variation in EstimatedRTT -> larger safety margin
- stimate SampleRTT deviation from EstimatedRTT:

```
DevRTT = (1-\beta)*DevRTT +
\beta*|SampleRTT-EstimatedRTT|
(typically, \beta = 0.25)
```

```
TimeoutInterval = EstimatedRTT + 4*DevRTT
```

Chapter 3 outline

- 3.1 transport-layer services
- 3.2 multiplexing and demultiplexing
- 3.3 connectionless transport: UDP
- 3.4 principles of reliable data transfer

- 3.5 connection-oriented transport: TCP
 - segment structure
 - reliable data transfer
 - flow control
 - connection management
- 3.6 principles of congestion control
- 3.7 TCP congestion control

TCP reliable data transfer

- TCP creates rdt service on top of IP's unreliable service
 - pipelined segments
 - cumulative acks
 - single retransmission timer
- retransmissions triggered by:
 - timeout events
 - duplicate acks

- let's initially consider simplified TCP sender:
 - ignore duplicate acks
 - ignore flow control, congestion control

TCP sender events:

data rcvd from app:

- create segment with seq #
- seq # is byte-stream number of first data byte in segment
- start timer if not already running
 - think of timer as for oldest unacked segment
 - expiration interval: TimeOutInterval

timeout:

- retransmit segment
 that caused timeout
- restart timer
 ack rcvd:
- if ack acknowledges previously unacked segments
 - update what is known to be ACKed
 - start timer if there are still unacked segments

TCP sender (simplified)

TCP: retransmission scenarios

Transport Layer 3-16

TCP: retransmission scenarios

Transport Layer 3-17

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver	TCP receiver action
arrival of in-order segment with expected seq #. All data up to expected seq # already ACKed	delayed ACK. Wait up to 500ms for next segment. If no next segment, send ACK
arrival of in-order segment with expected seq #. One other segment has ACK pending	immediately send single cumulative ACK, ACKing both in-order segments
arrival of out-of-order segment higher-than-expect seq. # . Gap detected	immediately send <i>duplicate ACK</i> , indicating seq. # of next expected byte
arrival of segment that partially or completely fills gap	immediate send ACK, provided that segment starts at lower end of gap

TCP fast retransmit

- time-out period often relatively long:
 - long delay before resending lost packet
- detect lost segments via duplicate ACKs.
 - sender often sends many segments backto-back
 - if segment is lost, there will likely be many duplicate ACKs.

- *TCP fast retransmit* if sender receives 3 ACKs for same data ("triple duplicate ACKs"), resend unacked segment with smallest seq #
 - likely that unacked segment lost, so don't wait for timeout

TCP fast retransmit

Chapter 3 outline

- 3.1 transport-layer services
- 3.2 multiplexing and demultiplexing
- 3.3 connectionless transport: UDP
- 3.4 principles of reliable data transfer

- 3.5 connection-oriented transport: TCP
 - segment structure
 - reliable data transfer
 - flow control
 - connection management
- 3.6 principles of congestion control
- 3.7 TCP congestion control

TCP flow control

TCP flow control

- receiver "advertises" free buffer space by including rwnd value in TCP header of receiver-to-sender segments
 - RcvBuffer size set via socket options (typical default is 4096 bytes)
 - many operating systems autoadjust RcvBuffer
- sender limits amount of unacked ("in-flight") data to receiver's rwnd value
- guarantees receive buffer will not overflow

Chapter 3 outline

- 3.1 transport-layer services
- 3.2 multiplexing and demultiplexing
- 3.3 connectionless transport: UDP
- 3.4 principles of reliable data transfer

- 3.5 connection-oriented transport: TCP
 - segment structure
 - reliable data transfer
 - flow control
 - connection management
- 3.6 principles of congestion control
- 3.7 TCP congestion control

Connection Management

before exchanging data, sender/receiver "handshake":

- agree to establish connection (each knowing the other willing to establish connection)
- agree on connection parameters

Socket connectionSocket =
 welcomeSocket.accept();

Agreeing to establish a connection

2-way handshake:

Q: will 2-way handshake always work in network?

- variable delays
- retransmitted messages
 (e.g. req_conn(x)) due to message loss
- message reordering
- * can't "see" other side

Agreeing to establish a connection

2-way handshake failure scenarios:

Transport Layer 3-27

TCP 3-way handshake

TCP: closing a connection

client, server each close their side of connection

- send TCP segment with FIN bit = I
- respond to received FIN with ACK
 - on receiving FIN, ACK can be combined with own FIN
- simultaneous FIN exchanges can be handled

TCP: closing a connection

Please read Chapter 3.7-3.8 of your textbook BEFORE Class