CMPE 150/L: Introduction to Computer Networks

Chen Qian

Computer Engineering

UCSC Baskin Engineering

Lecture 15
Start your final project ASAP

- Due date: 3/19
- Has been posted online
Chapter 4: outline

4.1 introduction
4.2 virtual circuit and datagram networks
4.3 what’s inside a router
4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
4.7 broadcast and multicast routing
Intra-AS Routing

- also known as *interior gateway protocols (IGP)*
- most common intra-AS routing protocols:
 - RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First
 - IGRP: Interior Gateway Routing Protocol (Cisco proprietary)
RIP (Routing Information Protocol)

- included in BSD-UNIX distribution in 1982
- distance vector algorithm
 - distance metric: # hops (max = 15 hops), each link has cost 1
 - DVs exchanged with neighbors every 30 sec in response message (aka advertisement)
 - each advertisement: list of up to 25 destination subnets (in IP addressing sense)

```
from router A to destination subnets:

<table>
<thead>
<tr>
<th>subnet</th>
<th>hops</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>1</td>
</tr>
<tr>
<td>v</td>
<td>2</td>
</tr>
<tr>
<td>w</td>
<td>2</td>
</tr>
<tr>
<td>x</td>
<td>3</td>
</tr>
<tr>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>z</td>
<td>2</td>
</tr>
</tbody>
</table>
```
RIP: example

routing table in router D

<table>
<thead>
<tr>
<th>destination subnet</th>
<th>next router</th>
<th># hops to dest</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>y</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>z</td>
<td>B</td>
<td>7</td>
</tr>
<tr>
<td>x</td>
<td>--</td>
<td>1</td>
</tr>
<tr>
<td>....</td>
<td>....</td>
<td>....</td>
</tr>
</tbody>
</table>
RIP: example

A-to-D advertisement

<table>
<thead>
<tr>
<th>dest</th>
<th>next</th>
<th>hops</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>x</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>z</td>
<td>c</td>
<td>4</td>
</tr>
</tbody>
</table>

Routing table in router D

<table>
<thead>
<tr>
<th>destination subnet</th>
<th>next router</th>
<th># hops to dest</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>y</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>z</td>
<td>B</td>
<td>7</td>
</tr>
<tr>
<td>x</td>
<td>--</td>
<td>1</td>
</tr>
<tr>
<td>....</td>
<td>....</td>
<td>....</td>
</tr>
</tbody>
</table>
RIP: link failure, recovery

if no advertisement heard after 180 sec --> neighbor/link declared dead

- routes via neighbor invalidated
- new advertisements sent to neighbors
- neighbors in turn send out new advertisements (if tables changed)
- link failure info quickly (?) propagates to entire net
OSPF (Open Shortest Path First)

- “open”: publicly available
- uses link state algorithm
 - LS packet dissemination
 - topology map at each node
 - route computation using Dijkstra’s algorithm
- OSPF advertisement carries one entry per neighbor
- advertisements flooded to entire AS
 - carried in OSPF messages directly over IP (rather than TCP or UDP)
- **IS-IS routing** protocol: nearly identical to OSPF
OSPF “advanced” features (not in RIP)

- **security**: all OSPF messages authenticated (to prevent malicious intrusion)
- **multiple same-cost paths** allowed (only one path in RIP)
- for each link, multiple cost metrics for different TOS (e.g., satellite link cost set “low” for best effort ToS; high for real time ToS)
- integrated uni- and **multicast** support:
 - Multicast OSPF (MOSPF) uses same topology database as OSPF
- **hierarchical** OSPF in large domains.
Internet inter-AS routing: BGP

- **BGP (Border Gateway Protocol):** the de facto inter-domain routing protocol
 - “glue that holds the Internet together”

- BGP provides each AS a means to:
 - **eBGP:** obtain subnet reachability information from neighboring ASs.
 - **iBGP:** propagate reachability information to all AS-internal routers.
 - determine “good” routes to other networks based on reachability information and policy.

- allows subnet to advertise its existence to rest of Internet: “I am here”
BGP basics

- **BGP session:** two BGP routers ("peers") exchange BGP messages:
 - advertising *paths* to different destination network prefixes ("path vector" protocol)
 - exchanged over semi-permanent TCP connections

- **when AS3 advertises a prefix to AS1:**
 - AS3 *promises* it will forward datagrams towards that prefix
 - AS3 can aggregate prefixes in its advertisement
BGP basics: distributing path information

- using eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1.
 - 1c can then use iBGP do distribute new prefix info to all routers in AS1
 - 1b can then re-advertise new reachability info to AS2 over 1b-to-2a eBGP session
- when router learns of new prefix, it creates entry for prefix in its forwarding table.
BGP route selection

- router may learn about more than 1 route to destination AS, selects route based on:
 1. local preference value attribute: policy decision
 2. shortest AS-PATH
 3. closest NEXT-HOP router: hot potato routing
 4. additional criteria
Path attributes and BGP routes

- advertised prefix includes BGP attributes
 - prefix + attributes = “route”

- two important attributes:
 - **AS-PATH**: contains ASs through which prefix advertisement has passed: e.g., AS 67, AS 17
 - **NEXT-HOP**: indicates specific internal-AS router to next-hop AS. (may be multiple links from current AS to next-hop-AS)

- gateway router receiving route advertisement uses **import policy** to accept/decline
 - e.g., never route through AS x
 - *policy-based* routing
BGP messages

- BGP messages exchanged between peers over TCP connection
- BGP messages:
 - **OPEN**: opens TCP connection to peer and authenticates sender
 - **UPDATE**: advertises new path (or withdraws old)
 - **KEEPALIVE**: keeps connection alive in absence of UPDATES; also ACKs OPEN request
 - **NOTIFICATION**: reports errors in previous msg; also used to close connection
BGP routing policy

- A, B, C are provider networks
- X, W, Y are customer (of provider networks)
- X is dual-homed: attached to two networks
 - X does not want to route from B via X to C
 - .. so X will not advertise to B a route to C
BGP routing policy (2)

- A advertises path AW to B
- B advertises path BAW to X
- Should B advertise path BAW to C?
 - No way! B gets no “revenue” for routing CBAW since neither W nor C are B’s customers
 - B wants to force C to route to w via A
 - B wants to route only to/from its customers!
Why different Intra-, Inter-AS routing?

Policy:
- inter-AS: admin wants control over how its traffic routed, who routes through its net.
- intra-AS: single admin, so no policy decisions needed

Scale:
- hierarchical routing saves table size, reduced update traffic

Performance:
- intra-AS: can focus on performance
- inter-AS: policy may dominate over performance
Chapter 4: outline

4.1 introduction
4.2 virtual circuit and datagram networks
4.3 what’s inside a router
4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
4.7 broadcast and multicast routing
Broadcast routing

- deliver packets from source to all other nodes
- source duplication is inefficient:

 - source duplication: how does source determine recipient addresses?

source duplication

in-network duplication
In-network duplication

- **flooding**: when node receives broadcast packet, sends copy to all neighbors
 - problems: cycles & broadcast storm
- **controlled flooding**: node only broadcasts pkt if it hasn’t broadcast same packet before
 - node keeps track of packet ids already broadcasted
 - or reverse path forwarding (RPF): only forward packet if it arrived on shortest path between node and source
- **spanning tree**:
 - no redundant packets received by any node
Spanning tree

- first construct a spanning tree
- nodes then forward/make copies only along spanning tree

(a) broadcast initiated at A

(b) broadcast initiated at D
Spanning tree: creation

- center node
- each node sends unicast join message to center node
 - message forwarded until it arrives at a node already belonging to spanning tree

(a) stepwise construction of spanning tree (center: E)
(b) constructed spanning tree
Chapter 4: done!

4.1 introduction
4.2 virtual circuit and datagram networks
4.3 what’s inside a router
4.4 IP: Internet Protocol
 • datagram format, IPv4 addressing, ICMP, IPv6

4.5 routing algorithms
 • link state, distance vector, hierarchical routing
4.6 routing in the Internet
 • RIP, OSPF, BGP
4.7 broadcast and multicast routing

❖ understand principles behind network layer services:
 • network layer service models, forwarding versus routing
 • how a router works, routing (path selection), broadcast, multicast
Chapter 5: Link layer, LANs: outline

5.1 introduction, services
5.2 error detection, correction
5.3 multiple access protocols
5.4 LANs
 ▪ addressing, ARP
 ▪ Ethernet
 ▪ switches
 ▪ VLANS
5.5 link virtualization: MPLS
5.6 data center networking
5.7 a day in the life of a web request
Link layer: introduction

terminology:
- hosts and routers: **nodes**
- communication channels that connect adjacent nodes along communication path: **links**
 - wired links
 - wireless links
 - LANs
- layer-2 packet: **frame**, encapsulates datagram

data-link layer has responsibility of transferring datagram from one node to **physically adjacent** node over a link.
Link layer: context

- datagram transferred by different link protocols over different links:
 - e.g., Ethernet on first link, frame relay on intermediate links, 802.11 on last link
- each link protocol provides different services
 - e.g., may or may not provide rdt over link

transportation analogy:
- trip from Santa Cruz to Suzhou
 - limo: Santa Cruz to SFO
 - plane: SFO to PVG (Shanghai)
 - train: Shanghai to Suzhou
- tourist = datagram
- transport segment = communication link
- transportation mode = link layer protocol
- travel agent = routing algorithm
Link layer services

- **framing, link access:**
 - encapsulate datagram into frame, adding header, trailer
 - channel access if shared medium
 - “MAC” addresses used in frame headers to identify source, dest
 - different from IP address!

- **reliable delivery between adjacent nodes**
 - we learned how to do this already (chapter 3)!
 - seldom used on low bit-error link (fiber, some twisted pair)
 - Used in wireless links: high error rates
 - Q: why both link-level and end-end reliability?
 - A: Reduce the frequency of end-end retrans
Link layer services (more)

- **flow control:**
 - pacing between adjacent sending and receiving nodes

- **error detection:**
 - errors caused by signal attenuation, noise.
 - receiver detects presence of errors:
 - signals sender for retransmission or drops frame

- **error correction:**
 - receiver identifies *and corrects* bit error(s) without resorting to retransmission

- **half-duplex and full-duplex**
 - with half duplex, nodes at both ends of link can transmit, but not at same time
Where is the link layer implemented?

- in each and every host
- link layer implemented in “adaptor” (aka *network interface card* NIC) or on a chip
 - Ethernet card, 802.11 card; Ethernet chipset
 - implements link, physical layer
- attaches into host’s system buses
- combination of hardware, software, firmware
Adaptors communicating

- **sending side:**
 - encapsulates datagram in frame
 - adds error checking bits, rdt, flow control, etc.

- **receiving side**
 - looks for errors, rdt, flow control, etc
 - extracts datagram, passes to upper layer at receiving side
Link layer, LANs: outline

5.1 introduction, services
5.2 error detection, correction
5.3 multiple access protocols
5.4 LANs
 - addressing, ARP
 - Ethernet
 - switches
 - VLANS
5.5 link virtualization: MPLS
5.6 data center networking
5.7 a day in the life of a web request
Error detection

EDC = Error Detection and Correction bits (redundancy)
D = Data protected by error checking, may include header fields

• Error detection not 100% reliable!
 • protocol may miss some errors, but rarely
 • larger EDC field yields better detection and correction
Parity checking

single bit parity:
- detect single bit errors

- d data bits → parity bit

| 0111000110101011 | 0 |

two-dimensional bit parity:
- detect and correct single bit errors

d_{1,1}	\ldots	d_{1,j}	d_{1, j+1}
d_{2,1}	\ldots	d_{2,j}	d_{2, j+1}
\ldots	\ldots	\ldots	\ldots
d_{i,1}	\ldots	d_{i,j}	d_{i, j+1}
d_{i+1,1}	\ldots	d_{i+1,j}	d_{i+1, j+1}

101011	101011	parity error
111100	101100	
011101	011101	
001010	001010	

no errors

correctable single bit error
Internet checksum (review)

goal: detect “errors” (e.g., flipped bits) in transmitted packet
(note: used at transport layer only)

sender:
- treat segment contents as sequence of 16-bit integers
- checksum: addition (1’s complement sum) of segment contents
- sender puts checksum value into UDP checksum field

receiver:
- compute checksum of received segment
- check if computed checksum equals checksum field value:
 - NO - error detected
 - YES - no error detected. *But maybe errors nonetheless?*
Cyclic redundancy check

- more powerful error-detection coding
- view data bits, D, as a binary number
- choose $r+1$ bit pattern (generator), G
- goal: choose r CRC bits, R, such that
 - $<D,R>$ exactly divisible by G (modulo 2)
 - receiver knows G, divides $<D,R>$ by G. If non-zero remainder: error detected!
 - can detect all burst errors less than $r+1$ bits
- widely used in practice (Ethernet, 802.11 WiFi, ATM)

bit pattern

D: data bits to be sent

R: CRC bits

mathematical formula

$D \times 2^r \text{ XOR } R$
Link layer, LANs: outline

5.1 introduction, services
5.2 error detection, correction
5.3 multiple access protocols
5.4 LANs
 ▪ addressing, ARP
 ▪ Ethernet
 ▪ switches
 ▪ VLANs
5.5 link virtualization: MPLS
5.6 data center networking
5.7 a day in the life of a web request
Multiple access links, protocols

two types of “links”:

- **point-to-point**
 - PPP for dial-up access
 - point-to-point link between Ethernet switch, host

- **broadcast (shared wire or medium)**
 - old-fashioned Ethernet
 - upstream HFC
 - 802.11 wireless LAN
Next class

- Please read Chapter 5.3-5.4 of your textbook BEFORE Class